Перевод: со всех языков на все языки

со всех языков на все языки

The North Eastern Railway

  • 1 Worsdell, Thomas William

    [br]
    b. 14 January 1838 Liverpool, England
    d. 28 June 1916 Arnside, Westmorland, England
    [br]
    English locomotive engineer, pioneer of the use of two-cylinder compound locomotives in Britain.
    [br]
    T.W.Worsdell was the son of Nathaniel Worsdell. After varied training, which included some time in the drawing office of the London \& North Western Railway's Crewe Works, he moved to the Pennsylvania Railroad, USA, in 1865 and shortly became Master Mechanic in charge of its locomotive workshops in Altoona. In 1871, however, he accepted an invitation from F.W. Webb to return to Crewe as Works Manager: it was while he was there that Webb produced his first compound locomotive by rebuilding an earlier simple.
    In 1881 T.W.Worsdell was appointed Locomotive Superintendent of the Great Eastern Railway. Working with August von Borries, who was Chief Mechanical Engineer of the Hannover Division of the Prussian State Railways, he developed a two-cylinder compound derived from the work of J.T.A. Mallet. Von Borries produced his compound 2–4–0 in 1880, Worsdell followed with a 4–4–0 in 1884; the restricted British loading gauge necessitated substitution of inside cylinders for the outside cylinders used by von Borries, particularly the large low-pressure one. T.W.Worsdell's compounds were on the whole successful and many were built, particularly on the North Eastern Railway, to which he moved as Locomotive Superintendent in 1885. There, in 1888, he started to build, uniquely, two-cylinder compound "single driver" 4–2–2s: one of them was recorded as reaching 86 mph (138 km/h). He also equipped his locomotives with a large side-window cab, which gave enginemen more protection from the elements than was usual in Britain at that time and was no doubt appreciated in the harsh winter climate of northeast England. The idea for the cab probably originated from his American experience. When T.W.Worsdell retired from the North Eastern Railway in 1890 he was succeeded by his younger brother, Wilson Worsdell, who in 1899 introduced the first 4– 6–0s intended for passenger trains in England.
    [br]
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 15 (biography).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, London: The Locomotive Publishing Co., pp. 253–5 (describes his locomotives). C.Fryer, 1990, Experiments with Steam, Patrick Stephens, Ch. 7.
    PJGR

    Biographical history of technology > Worsdell, Thomas William

  • 2 Thompson, Benjamin

    [br]
    b. 11 April 1779 Eccleshall, Yorkshire, England
    d. 19 April 1867 Gateshead, England
    [br]
    English coal owner and railway engineer, inventor of reciprocal cable haulage.
    [br]
    After being educated at Sheffield Grammar School, Thompson and his elder brother established Aberdare Iron Works, South Wales, where he gained experience in mine engineering from the coal-and ironstone-mines with which the works were connected. In 1811 he moved to the North of England as Managing Partner in Bewicke's Main Colliery, County Durham, which was replaced in 1814 by a new colliery at nearby Ouston. Coal from this was carried to the Tyne over the Pelew Main Wagonway, which included a 1,992 yd (1,821 m) section where horses had to haul loaded wagons between the top of one cable-worked incline and the foot of the next. Both inclines were worked by stationary steam engines, and by installing a rope with a record length of nearly 1 1/2 miles (2.4 km), in 1821 Thompson arranged for the engine of the upper incline to haul the loaded wagons along the intervening section also. To their rear was attached the rope from the engine of the lower incline, to be used in due course to haul the empties back again.
    He subsequently installed this system of "reciprocal working" elsewhere, in particular in 1826 over five miles (8 km) of the Brunton \& Shields Railroad, a colliery line north of the Tyne, where trains were hauled at an average speed of 6 mph (10 km/h) including rope changes. This performance was better than that of contemporary locomotives. The directors of the Liverpool \& Manchester Railway, which was then being built, considered installing reciprocal cable haulage on their line, and then decided to stage a competition to establish whether an improved steam locomotive could do better still. This competition became the Rainhill Trials of 1829 and was decisively won by Rocket, which had been built for the purpose.
    Thompson meanwhile had become prominent in the promotion of the Newcastle \& Carlisle Railway, which, when it received its Act in 1829, was the longest railway so far authorized in Britain.
    [br]
    Bibliography
    1821, British patent no. 4602 (reciprocal working).
    1847, Inventions, Improvements and Practice of Benjamin Thompson, Newcastle upon Tyne: Lambert.
    Further Reading
    W.W.Tomlinson, 1914, The North Eastern Railway, Newcastle upon Tyne: Andrew Reid (includes a description of Thompson and his work).
    R.Welford, 1895, Men of Mark twixt Tyne and Tweed, Vol. 3, 506–6.
    C.R.Warn, 1976, Waggonways and Early Railways of Northumberland, Newcastle upon Tyne: Frank Graham.
    ——c. 1981, Rails between Wear \& Tyne, Newcastle upon Tyne: Frank Graham.
    PJGR

    Biographical history of technology > Thompson, Benjamin

  • 3 Johnson, Samuel Waite

    [br]
    b. 14 October 1831 Bramley, Leeds, England
    d. 14 January 1912 Nottingham, England
    [br]
    English locomotive engineer, designer of Midland Railway's successful compound locomotives.
    [br]
    After an apprenticeship with E.B.Wilson, Leeds, Johnson worked successively for the Great Northern, Manchester Sheffield \& Lincolnshire, Edinburgh \& Glasgow and Great Eastern Railways before being appointed Locomotive Superintendent of the Midland Railway in 1873. There he remained for the rest of his working life, becoming notable for well-designed, well-finished locomotives. Of these, the most famous were his 4–2–2 express locomotives, introduced in 1887. The use of a single pair of driving-wheels was made possible at this late date by application of steam sanding gear (invented in 1886 by F. Holt) to enable them to haul heavy trains without slipping. In 1901, almost at the end of his career, he produced the first Midland compound 4–4–0, with a single internal high-pressure cylinder and two external low-pressure ones. The system had been devised by W.M.Smith, working on the North Eastern Railway under Wilson Worsdell. These locomotives were successful enough to be developed and built in quantity by Johnson's successors and were adopted as a standard locomotive by the London Midland \& Scottish Railway after the grouping of 1923.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers 1898.
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan, Ch. 11 (describes Johnson's career).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, The Locomotive Publishing Co. (describes Johnson's locomotives).
    PJGR

    Biographical history of technology > Johnson, Samuel Waite

  • 4 Priestman, William Dent

    [br]
    b. 23 August 1847 Sutton, Hull, England
    d. 7 September 1936 Hull, England
    [br]
    English oil engine pioneer.
    [br]
    William was the second son and one of eleven children of Samuel Priestman, who had moved to Hull after retiring as a corn miller in Kirkstall, Leeds, and who in retirement had become a director of the North Eastern Railway Company. The family were strict Quakers, so William was sent to the Quaker School in Bootham, York. He left school at the age of 17 to start an engineering apprenticeship at the Humber Iron Works, but this company failed so the apprenticeship was continued with the North Eastern Railway, Gateshead. In 1869 he joined the hydraulics department of Sir William Armstrong \& Company, Newcastle upon Tyne, but after a year there his father financed him in business at a small, run down works, the Holderness Foundry, Hull. He was soon joined by his brother, Samuel, their main business being the manufacture of dredging equipment (grabs), cranes and winches. In the late 1870s William became interested in internal combustion engines. He took a sublicence to manufacture petrol engines to the patents of Eugène Etève of Paris from the British licensees, Moll and Dando. These engines operated in a similar manner to the non-compression gas engines of Lenoir. Failure to make the two-stroke version of this engine work satisfactorily forced him to pay royalties to Crossley Bros, the British licensees of the Otto four-stroke patents.
    Fear of the dangers of petrol as a fuel, reflected by the associated very high insurance premiums, led William to experiment with the use of lamp oil as an engine fuel. His first of many patents was for a vaporizer. This was in 1885, well before Ackroyd Stuart. What distinguished the Priestman engine was the provision of an air pump which pressurized the fuel tank, outlets at the top and bottom of which led to a fuel atomizer injecting continuously into a vaporizing chamber heated by the exhaust gases. A spring-loaded inlet valve connected the chamber to the atmosphere, with the inlet valve proper between the chamber and the working cylinder being camoperated. A plug valve in the fuel line and a butterfly valve at the inlet to the chamber were operated, via a linkage, by the speed governor; this is believed to be the first use of this method of control. It was found that vaporization was only partly achieved, the higher fractions of the fuel condensing on the cylinder walls. A virtue was made of this as it provided vital lubrication. A starting system had to be provided, this comprising a lamp for preheating the vaporizing chamber and a hand pump for pressurizing the fuel tank.
    Engines of 2–10 hp (1.5–7.5 kW) were exhibited to the press in 1886; of these, a vertical engine was installed in a tram car and one of the horizontals in a motor dray. In 1888, engines were shown publicly at the Royal Agricultural Show, while in 1890 two-cylinder vertical marine engines were introduced in sizes from 2 to 10 hp (1.5–7.5 kW), and later double-acting ones up to some 60 hp (45 kW). First, clutch and gearbox reversing was used, but reversing propellers were fitted later (Priestman patent of 1892). In the same year a factory was established in Philadelphia, USA, where engines in the range 5–20 hp (3.7–15 kW) were made. Construction was radically different from that of the previous ones, the bosses of the twin flywheels acting as crank discs with the main bearings on the outside.
    On independent test in 1892, a Priestman engine achieved a full-load brake thermal efficiency of some 14 per cent, a very creditable figure for a compression ratio limited to under 3:1 by detonation problems. However, efficiency at low loads fell off seriously owing to the throttle governing, and the engines were heavy, complex and expensive compared with the competition.
    Decline in sales of dredging equipment and bad debts forced the firm into insolvency in 1895 and receivers took over. A new company was formed, the brothers being excluded. However, they were able to attend board meetings, but to exert no influence. Engine activities ceased in about 1904 after over 1,000 engines had been made. It is probable that the Quaker ethics of the brothers were out of place in a business that was becoming increasingly cut-throat. William spent the rest of his long life serving others.
    [br]
    Further Reading
    C.Lyle Cummins, 1976, Internal Fire, Carnot Press.
    C.Lyle Cummins and J.D.Priestman, 1985, "William Dent Priestman, oil engine pioneer and inventor: his engine patents 1885–1901", Proceedings of the Institution of
    Mechanical Engineers 199:133.
    Anthony Harcombe, 1977, "Priestman's oil engine", Stationary Engine Magazine 42 (August).
    JB

    Biographical history of technology > Priestman, William Dent

  • 5 Adams, William Bridges

    [br]
    b. 1797 Madeley, Staffordshire, England
    d. 23 July 1872 Broadstairs, Kent, England
    [br]
    English inventory particularly of road and rail vehicles and their equipment.
    [br]
    Ill health forced Adams to live abroad when he was a young man and when he returned to England in the early 1830s he became a partner in his father's firm of coachbuilders. Coaches during that period were steered by a centrally pivoted front axle, which meant that the front wheels had to swing beneath the body and were therefore made smaller than the rear wheels. Adams considered this design defective and invented equirotal coaches, built by his firm, in which the front and rear wheels were of equal diameter and the coach body was articulated midway along its length so that the front part pivoted. He also applied himself to improving vehicles for railways, which were developing rapidly then.
    In 1843 he opened his own engineering works, Fairfield Works in north London (he was not related to his contemporary William Adams, who was appointed Locomotive Superintendent to the North London Railway in 1854). In 1847 he and James Samuel, Engineer to the Eastern Counties Railway, built for that line a small steam inspection car, the Express, which was light enough to be lifted off the track. The following year Adams built a broad-gauge steam railcar, the Fairfield, for the Bristol \& Exeter Railway at the insistance of the line's Engineer, C.H.Gregory: self-propelled and passenger-carrying, this was the first railcar. Adams developed the concept further into a light locomotive that could haul two or three separate carriages, and light locomotives built both by his own firm and by other noted builders came into vogue for a decade or more.
    In 1847 Adams also built eight-wheeled coaches for the Eastern Counties Railway that were larger and more spacious than most others of the day: each in effect comprised two four-wheeled coaches articulated together, with wheels that were allowed limited side-play. He also realized the necessity for improvements to railway track, the weakest point of which was the joints between the rails, whose adjoining ends were normally held in common chairs. Adams invented the fishplated joint, first used by the Eastern Counties Railway in 1849 and subsequently used almost universally.
    Adams was a prolific inventor. Most important of his later inventions was the radial axle, which was first applied to the leading and trailing wheels of a 2–4–2 tank engine, the White Raven, built in 1863; Adams's radial axle was the forerunner of all later radial axles. However, the sprung tyres with which White Raven was also fitted (an elastic steel hoop was interposed between wheel centre and tyre) were not perpetuated. His inventiveness was not restricted to engineering: in matters of dress, his adoption, perhaps invention, of the turn-down collar at a time when men conventionally wore standup collars had lasting effect.
    [br]
    Bibliography
    Adams took out some thirty five British patents, including one for the fishplate in 1847. He wrote copiously, as journalist and author: his most important book was English Pleasure Carriages (1837), a detailed description of coachbuilding, together with ideas for railway vehicles and track. The 1971 reprint (Bath: Adams \& Dart) has a biographical introduction by Jack Simmons.
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 1. See also England, George.
    PJGR

    Biographical history of technology > Adams, William Bridges

  • 6 Gresley, Sir Herbert Nigel

    [br]
    b. 19 June 1876 Edinburgh, Scotland
    d. 5 April 1941 Hertford, England
    [br]
    English mechanical engineer, designer of the A4-class 4–6–2 locomotive holding the world speed record for steam traction.
    [br]
    Gresley was the son of the Rector of Netherseale, Derbyshire; he was educated at Marlborough and by the age of 13 was skilled at making sketches of locomotives. In 1893 he became a pupil of F.W. Webb at Crewe works, London \& North Western Railway, and in 1898 he moved to Horwich works, Lancashire \& Yorkshire Railway, to gain drawing-office experience under J.A.F.Aspinall, subsequently becoming Foreman of the locomotive running sheds at Blackpool. In 1900 he transferred to the carriage and wagon department, and in 1904 he had risen to become its Assistant Superintendent. In 1905 he moved to the Great Northern Railway, becoming Superintendent of its carriage and wagon department at Doncaster under H.A. Ivatt. In 1906 he designed and produced a bogie luggage van with steel underframe, teak body, elliptical roof, bowed ends and buckeye couplings: this became the prototype for East Coast main-line coaches built over the next thirty-five years. In 1911 Gresley succeeded Ivatt as Locomotive, Carriage \& Wagon Superintendent. His first locomotive was a mixed-traffic 2–6–0, his next a 2–8–0 for freight. From 1915 he worked on the design of a 4–6–2 locomotive for express passenger traffic: as with Ivatt's 4 4 2s, the trailing axle would allow the wide firebox needed for Yorkshire coal. He also devised a means by which two sets of valve gear could operate the valves on a three-cylinder locomotive and applied it for the first time on a 2–8–0 built in 1918. The system was complex, but a later simplified form was used on all subsequent Gresley three-cylinder locomotives, including his first 4–6–2 which appeared in 1922. In 1921, Gresley introduced the first British restaurant car with electric cooking facilities.
    With the grouping of 1923, the Great Northern Railway was absorbed into the London \& North Eastern Railway and Gresley was appointed Chief Mechanical Engineer. More 4–6– 2s were built, the first British class of such wheel arrangement. Modifications to their valve gear, along lines developed by G.J. Churchward, reduced their coal consumption sufficiently to enable them to run non-stop between London and Edinburgh. So that enginemen might change over en route, some of the locomotives were equipped with corridor tenders from 1928. The design was steadily improved in detail, and by comparison an experimental 4–6–4 with a watertube boiler that Gresley produced in 1929 showed no overall benefit. A successful high-powered 2–8–2 was built in 1934, following the introduction of third-class sleeping cars, to haul 500-ton passenger trains between Edinburgh and Aberdeen.
    In 1932 the need to meet increasing road competition had resulted in the end of a long-standing agreement between East Coast and West Coast railways, that train journeys between London and Edinburgh by either route should be scheduled to take 8 1/4 hours. Seeking to accelerate train services, Gresley studied high-speed, diesel-electric railcars in Germany and petrol-electric railcars in France. He considered them for the London \& North Eastern Railway, but a test run by a train hauled by one of his 4–6–2s in 1934, which reached 108 mph (174 km/h), suggested that a steam train could better the railcar proposals while its accommodation would be more comfortable. To celebrate the Silver Jubilee of King George V, a high-speed, streamlined train between London and Newcastle upon Tyne was proposed, the first such train in Britain. An improved 4–6–2, the A4 class, was designed with modifications to ensure free running and an ample reserve of power up hill. Its streamlined outline included a wedge-shaped front which reduced wind resistance and helped to lift the exhaust dear of the cab windows at speed. The first locomotive of the class, named Silver Link, ran at an average speed of 100 mph (161 km/h) for 43 miles (69 km), with a maximum speed of 112 1/2 mph (181 km/h), on a seven-coach test train on 27 September 1935: the locomotive went into service hauling the Silver Jubilee express single-handed (since others of the class had still to be completed) for the first three weeks, a round trip of 536 miles (863 km) daily, much of it at 90 mph (145 km/h), without any mechanical troubles at all. Coaches for the Silver Jubilee had teak-framed, steel-panelled bodies on all-steel, welded underframes; windows were double glazed; and there was a pressure ventilation/heating system. Comparable trains were introduced between London Kings Cross and Edinburgh in 1937 and to Leeds in 1938.
    Gresley did not hesitate to incorporate outstanding features from elsewhere into his locomotive designs and was well aware of the work of André Chapelon in France. Four A4s built in 1938 were equipped with Kylchap twin blast-pipes and double chimneys to improve performance still further. The first of these to be completed, no. 4468, Mallard, on 3 July 1938 ran a test train at over 120 mph (193 km/h) for 2 miles (3.2 km) and momentarily achieved 126 mph (203 km/h), the world speed record for steam traction. J.Duddington was the driver and T.Bray the fireman. The use of high-speed trains came to an end with the Second World War. The A4s were then demonstrated to be powerful as well as fast: one was noted hauling a 730-ton, 22-coach train at an average speed exceeding 75 mph (120 km/h) over 30 miles (48 km). The war also halted electrification of the Manchester-Sheffield line, on the 1,500 volt DC overhead system; however, anticipating eventual resumption, Gresley had a prototype main-line Bo-Bo electric locomotive built in 1941. Sadly, Gresley died from a heart attack while still in office.
    [br]
    Principal Honours and Distinctions
    Knighted 1936. President, Institution of Locomotive Engineers 1927 and 1934. President, Institution of Mechanical Engineers 1936.
    Further Reading
    F.A.S.Brown, 1961, Nigel Gresley, Locomotive Engineer, Ian Allan (full-length biography).
    John Bellwood and David Jenkinson, Gresley and Stanier. A Centenary Tribute (a good comparative account).
    PJGR

    Biographical history of technology > Gresley, Sir Herbert Nigel

  • 7 Bulleid, Oliver Vaughan Snell

    [br]
    b. 19 September 1882 Invercargill, New Zealand
    d. 25 April 1970 Malta
    [br]
    New Zealand (naturalized British) locomotive engineer noted for original experimental work in the 1940s and 1950s.
    [br]
    Bulleid's father died in 1889 and mother and son returned to the UK from New Zealand; Bulleid himself became a premium apprentice under H.A. Ivatt at Doncaster Works, Great Northern Railway (GNR). After working in France and for the Board of Trade, Bulleid returned to the GNR in 1912 as Personal Assistant to Chief Mechanical Engineer H.N. Gresley. After a break for war service, he returned as Assistant to Gresley on the latter's appointment as Chief Mechanical Engineer of the London \& North Eastern Railway in 1923. He was closely associated with Gresley during the late 1920s and early 1930s.
    In 1937 Bulleid was appointed Chief Mechanical Engineer of the Southern Railway (SR). Concentration of resources on electrification had left the Southern short of up-to-date steam locomotives, which Bulleid proceeded to provide. His first design, the "Merchant Navy" class 4–6– 2, appeared in 1941 with chain-driven valve gear enclosed in an oil-bath, and other novel features. A powerful "austerity" 0−6−0 appeared in 1942, shorn of all inessentials to meet wartime conditions, and a mixed-traffic 4−6−2 in 1945. All were largely successful.
    Under Bulleid's supervision, three large, mixed-traffic, electric locomotives were built for the Southern's 660 volt DC system and incorporated flywheel-driven generators to overcome the problem of interruptions in the live rail. Three main-line diesel-electric locomotives were completed after nationalization of the SR in 1948. All were carried on bogies, as was Bulleid's last steam locomotive design for the SR, the "Leader" class 0−6−6−0 originally intended to meet a requirement for a large, passenger tank locomotive. The first was completed after nationalization of the SR, but the project never went beyond trials. Marginally more successful was a double-deck, electric, suburban, multiple-unit train completed in 1949, with alternate high and low compartments to increase train capacity but not length. The main disadvantage was the slow entry and exit by passengers, and the type was not perpetuated, although the prototype train ran in service until 1971.
    In 1951 Bulleid moved to Coras Iompair Éireann, the Irish national transport undertaking, as Chief Mechanical Engineer. There he initiated a large-scale plan for dieselization of the railway system in 1953, the first such plan in the British Isles. Simultaneously he developed, with limited success, a steam locomotive intended to burn peat briquettes: to burn peat, the only native fuel, had been a long-unfulfilled ambition of railway engineers in Ireland. Bulleid retired in 1958.
    [br]
    Bibliography
    Bulleid took out six patents between 1941 and 1956, covering inter alia valve gear, boilers, brake apparatus and wagon underframes.
    Further Reading
    H.A.V.Bulleid, 1977, Bulleid of the Southern, Shepperton: Ian Allan (a good biography written by the subject's son).
    C.Fryer, 1990, Experiments with Steam, Wellingborough: Patrick Stephens (provides details of the austerity 0–6–0, the "Leader" locomotive and the peat-burning locomotive: see Chs 19, 20 and 21 respectively).
    PJGR

    Biographical history of technology > Bulleid, Oliver Vaughan Snell

  • 8 Krauss, Georg

    [br]
    b. 25 December 1826 Augsburg, Germany
    d. 5 November 1906 Munich, Germany
    [br]
    German locomotive engineer, founder of the locomotive builders Krauss \& Co.
    [br]
    Krauss entered the Maffei locomotive works, Munich, as a fitter and subsequently worked successively for the Bavarian State Railways and the Swiss North Eastern Railway, which he left in 1866 to found Locomotivfabrik Krauss in Munich. The firm became one of the most important locomotive builders in Germany. A second factory was established in Munich in 1872 and a third at Linz, Austria, in 1880: by the time of Krauss's death, these factories had built more than 5,500 locomotives. The second Munich factory was predominantly for small locomotives, and to increase the sales of these Krauss promoted the construction of many local railways in south Germany and Austria. The firm survived to amalgamate with Maffei and take the name Krauss-Maffei AG in 1940.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Biographical note, 1985–6, Transactions of the Newcomen Society 57:46.
    PJGR

    Biographical history of technology > Krauss, Georg

  • 9 Bouch, Sir Thomas

    SUBJECT AREA: Civil engineering
    [br]
    b. 22 February 1822 Thursby, Cumberland, England
    d. 1880 Moffat
    [br]
    English designer of the ill-fated Tay railway bridge.
    [br]
    The third son of a merchant sea captain, he was at first educated in the village school. At the age of 17 he was working under a Mr Larmer, a civil engineer, constructing the Lancaster and Carlisle railway. He later moved to be a resident engineer on the Stockton \& Darlington Railway, and from 1849 was Engineer and Manager of the Edinburgh \& Northern Railway. In this last position he became aware of the great inconvenience caused to traffic by the broad estuaries of the Tay and the Forth on the eastern side of Scotland. The railway later became the Edinburgh, Perth \& Dundee, and was then absorbed into the North British in 1854 when Bouch produced his first plans for a bridge across the Tay at an estimated cost of £200,000. A bill was passed for the building of the bridge in 1870. Prior to this, Bouch had built many bridges up to the Redheugh Viaduct, at Newcastle upon Tyne, which had two spans of 240 ft (73 m) and two of 260 ft (79 m). He had also set up in business on his own. He is said to have designed nearly 300 miles (480 km) of railway in the north, as well as a "floating railway" of steam ferries to carry trains across the Forth and the Tay. The Tay bridge, however, was his favourite project; he had hawked it for some twenty years before getting the go-ahead, and the foundation stone of the bridge was laid on 22 July 1871. The total length of the bridge was nearly two miles (3.2 km), while the shore-to-shore distance over the river was just over one mile (1.6 km). It consisted of eighty-five spans, thirteen of which, i.e. "the high girders", were some 245 ft (75 m) long and 100 ft (30 m) above water level to allow for shipping access to Perth, and was a structure of lattice girders on brick and masonry piers topped with ironwork. The first crossing of the bridge was made on 26 September 1877, and the official opening was on 31 May 1878. On Sunday 28 December 1879, at about 7.20 pm, in a wind of probably 90 mph (145 km/h), the thirteen "high girders" were blown into the river below, drowning the seventy-five passengers and crew aboard the 5.20 train from Burntisland. A Court of Enquiry was held and revealed design faults in that the effect of wind pressure had not been adequately taken into account, faults in manufacture in the plugging of flaws in the castings, and inadequate inspection and maintenance; all of these faults were attributed to Bouch, who had been knighted for the building of the bridge. He died at his house in Moffat four months after the enquiry.
    [br]
    Principal Honours and Distinctions
    Knighted. Cross of St George.
    Further Reading
    John Prebble, 1956, The High Girders.
    IMcN

    Biographical history of technology > Bouch, Sir Thomas

  • 10 Ramsbottom, John

    [br]
    b. 11 September 1814 Todmorden, Lancashire, England
    d. 20 May 1897 Alderley Edge, Cheshire, England
    [br]
    English railway engineer, inventor of the reversing rolling mill.
    [br]
    Ramsbottom's initial experience was gained at the locomotive manufacturers Sharp, Roberts \& Co. At the age of 28 he was Manager of the Longsight works of the Manchester \& Birmingham Railway, which, with other lines, became part of the London \& North Western Railway (L \& NWR) in 1846. Ramsbottom was appointed Locomotive Superintendent of its north-eastern division. Soon after 1850 came his first major invention, that of the split-ring piston, consisting of castiron rings fitted round the piston to ensure a steam-tight fit in the cylinder. This proved to be successful, with a worldwide application. In 1856 he introduced sight-feed lubrication and the form of safety valve that bears his name. In 1857 he became Locomotive Superintendent of the L \& NWR at Crewe, producing two notable classes of locomotives: 2–4–0s for passenger traffic; and 0–6–0s for goods. They were of straightforward design and robust construction, and ran successfully for many years. His most spectacular railway invention was the water trough between the rails which enabled locomotives to replenish their water tanks without stopping.
    As part of his policy of making Crewe works as independent as possible, Ramsbottom made several metallurgical innovations. He installed one of the earliest Bessemer converters for steelmaking. More important, in 1866 he coupled the engine part of a railway engine to a two-high rolling mill so that the rolls could be run in either direction, and quickly change direction, by means of the standard railway link reversing gear. This greatly speeded up the rolling of iron or steel into the required sections. He eventually retired in 1871.
    [br]
    Further Reading
    J.N.Weatwood, 1977, Locomotive Designers in the Age of Steam, London: Sidgwick \& Jackson, pp. 43–7.
    W.K.V.Gale, 1969, Iron and Steel, London: Longmans, p. 80 (provides brief details of his reversing mill).
    F.C.Hammerton, 1937, John Ramsbottom, the Father of the Modern Locomotive,
    London.
    LRD

    Biographical history of technology > Ramsbottom, John

  • 11 Vignoles, Charles Blacker

    [br]
    b. 31 May 1793 Woodbrook, Co. Wexford, Ireland
    d. 17 November 1875 Hythe, Hampshire, England
    [br]
    English surveyor and civil engineer, pioneer of railways.
    [br]
    Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.
    In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.
    Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.
    After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.
    Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.
    Bibliography
    1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).
    1823, Observations upon the Floridas, New York: Bliss \& White.
    1870, Address on His Election as President of the Institution of Civil Engineers.
    Further Reading
    K.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).
    PJGR

    Biographical history of technology > Vignoles, Charles Blacker

  • 12 Gooch, Sir Daniel

    [br]
    b. 24 August 1816 Bedlington, Northumberland, England
    d. 15 October 1889 Clewer Park, Berkshire, England
    [br]
    English engineer, first locomotive superintendent of the Great Western Railway and pioneer of transatlantic electric telegraphy.
    [br]
    Gooch gained experience as a pupil with several successive engineering firms, including Vulcan Foundry and Robert Stephenson \& Co. In 1837 he was engaged by I.K. Brunel, who was then building the Great Western Railway (GWR) to the broad gauge of 7 ft 1/4 in. (2.14 m), to take charge of the railway's locomotive department. He was just 21 years old. The initial locomotive stock comprised several locomotives built to such extreme specifications laid down by Brunel that they were virtually unworkable, and two 2–2–2 locomotives, North Star and Morning Star, which had been built by Robert Stephenson \& Co. but left on the builder's hands. These latter were reliable and were perpetuated. An enlarged version, the "Fire Fly" class, was designed by Gooch and built in quantity: Gooch was an early proponent of standardization. His highly successful 4–2–2 Iron Duke of 1847 became the prototype of GWR express locomotives for the next forty-five years, until the railway's last broad-gauge sections were narrowed. Meanwhile Gooch had been largely responsible for establishing Swindon Works, opened in 1843. In 1862 he designed 2–4–0 condensing tank locomotives to work the first urban underground railway, the Metropolitan Railway in London. Gooch retired in 1864 but was then instrumental in arranging for Brunel's immense steamship Great Eastern to be used to lay the first transatlantic electric telegraph cable: he was on board when the cable was successfully laid in 1866. He had been elected Member of Parliament for Cricklade (which constituency included Swindon) in 1865, and the same year he had accepted an invitation to become Chairman of the Great Western Railway Company, which was in financial difficulties; he rescued it from near bankruptcy and remained Chairman until shortly before his death. The greatest engineering work undertaken during his chairmanship was the boring of the Severn Tunnel.
    [br]
    Principal Honours and Distinctions
    Knighted 1866 (on completion of transatlantic telegraph).
    Bibliography
    1972, Sir Daniel Gooch, Memoirs and Diary, ed. R.B.Wilson, with introd. and notes, Newton Abbot: David \& Charles.
    Further Reading
    A.Platt, 1987, The Life and Times of Daniel Gooch, Gloucester: Alan Sutton (puts Gooch's career into context).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan (contains a good short biography).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, pp. 112–5.
    PJGR

    Biographical history of technology > Gooch, Sir Daniel

См. также в других словарях:

  • North Eastern Railway Zone (India) — North Eastern Railway System map 2 North Eastern Railway Dates of operation 1952– Track gauge Mixed Headquarters Gorakhpur Website North Eastern Rai …   Wikipedia

  • North Eastern Railway (India) — The North Eastern Railway is one of the fifteen railway zones in India. It is headquartered at Gorakhpur and comprises Lucknow and Varanasi divisions as well as reorganized Izzatnagar division.External links* [http://www.ner.railnet.gov.in/ North …   Wikipedia

  • North Eastern Railway (UK) — For the now defunct train operating company that ran the InterCity East Coast franchise, see Great North Eastern Railway (Also see: National Express East Coast and East Coast). North Eastern Railway map, c. 1900, York station. The North… …   Wikipedia

  • North Eastern Railway — could refer to: North Eastern Railway (Australia) North Eastern Railway (Canada) North Eastern Railway (India) North Eastern Railway (UK) This disambiguation page lists articles associated with the same title. If an …   Wikipedia

  • London and North Eastern Railway — The London and North Eastern Railway (LNER) was the second largest of the Big Four railway companies created by the Railways Act 1921 in Britain. It existed from 1 January 1923 until nationalisation on 1 January 1948, when it was divided into the …   Wikipedia

  • Locomotives of the London and North Eastern Railway — The London and North Eastern Railway (LNER) produced several classes of locomotive, mostly to the designs of Nigel Gresley, characterised by a three cylinder layout with a parallel boiler and round topped firebox. It produced the most iconic… …   Wikipedia

  • Scottish North Eastern Railway — The Scottish North Eastern Railway was created when the Aberdeen Railway amalgamated with the Scottish Midland Junction Railway (which had previously absorbed the Arbroath and Forfar Railway on 29 July 1856.The Alyth Railway was operated by the… …   Wikipedia

  • Argentine North Eastern Railway — The Argentine North Eastern Railway (ANE) (in Spanish: Ferrocarril Nordeste Argentino) was a British owned railway company, founded in 1887, that operated a RailGauge|sg|al=on|lk=on railway network in the provinces of Entre Ríos, Corrientes and… …   Wikipedia

  • Great North Eastern Railway — Infobox Rail companies bgcolor=EF3E33 image filename=91118 %27Bradford Film Festival%27 at Peterborough.jpg| widthpx=300px franchise=InterCity East Coast April 1996 – 2003 2003 2005 2005 – 9 December 2007 [cite web… …   Wikipedia

  • List of constituents of the London and North Eastern Railway — The London and North Eastern Railway (LNER) was formed out of a number of constituent railway companies at the grouping in 1923. Main companiesThe main companies, showing their route mileage, were: * Great Eastern Railway (GER) 1191.25 miles… …   Wikipedia

  • Coaches of the London and North Eastern Railway — The London and North Eastern Railway (LNER) inherited several styles of coaching stock from its constituents. Sir Nigel Gresley continued the styles that he had established pre grouping at the Great Northern Railway (GNR) and for the East Coast… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»